DOI: 10.15413/ajmp.2020.0143

ISSN: 2315-7720

©2021 Academia Publishing





## Research Paper

# Chemical components isolated from the leaves of *Podocarpus nagi* planted in Fujian and preliminary *in vitro* anticancer activity

Accepted 27th November, 2020

#### **ABSTRACT**

Yang Yang 1,2,4,5, Jian-Ping Yong 3\*, Olagoke Zacchaeus Olatunde 1,5, Can-Zhong Lu 1,3,4\*

<sup>1</sup>Fujian Institute of Research on the Structure of Matter, Haixi Institute, Chinese Academy of Sciences, Fuzhou, China

<sup>2</sup>Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China <sup>3</sup>Xiamen Institute of Rare-earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China <sup>4</sup>ShanghaiTech University, Shanghai, China <sup>5</sup>University of Chinese Academy of Sciences, Beijing, China

\*Corresponding authors. E-mail: jpyong@fjirsm.ac.cn (J.P. Yong), czlu@fjirsm.ac.cn (C.Z. Lu)

The present study was conducted to isolate four compounds (1-4) from the ethyl acetate extraction of the *Podocarpus nagi* leaves planted in Fujian. Tri(2,4-di-tert-butylphenyl) phosphate (4) were isolated for the first time from this Chinese Traditional Plant Medicine. Other three known compounds were: sugiol (1), Podocarpusflavone A (2), and II-4',I-7-dimethoxy amentoflavone (3). Their structures were elucidated by NMR and XRD analysis. Compound 1 was selected to evaluate the preliminary *in vitro* anticancer activity against cancer cell lines. The results showed that it exhibited higher inhibition against gastric cancer, breast cancer (MCF-7), lung cancer(A549) and Hela cell lines with the inhibitions of 81.48%±1.36, 82.73%±2.08, 53.33%±1.82 and 23.92%±1.2.73, respectively at the concentration of 1.5×10<sup>-2</sup>M.

**Key words:** *Podocarpus nagi,* compounds (1-4), anticancer activities.

#### INTRODUCTION

Podocarpus nagi (P. nagi, named Zhubai in Chinese) is widely distributed in south districts of Yangtze River, such as Fujian, Hunan, Guangxi and Guangdong, etc. This plant exhibited a wide spectrum of biological activities, such as hemostasis, bone setting, anti-bacterial, anti-tumor, antiviral, antioxidant and detumescence activities (Liao and Wei, 2015). According to the folk records of the Yao Nationality, P. nagi has ever been used to treat trauma, stop-bleeding, fractures, knife wounds, gunshot wounds, body odor, eye diseases and colds, etc. The fresh bark or root of P. nagi was also used to treat the rheumatoid arthritis (<Zhong Hua Ben Cao>, 1999; Dai, 2009; Yang et al., 2019). Several studies on the chemical components and biological activities of P. nagi have been carried out. Ye Yang and Xu Yaming's groups isolated *P. nagi* lactones from P. nagi planted in Guangdong province and evaluated their biological activity. The results showed that most of them exhibited higher antitumor activity (Zheng et al., 2018; Xu and Fang, 1989). Chen Yegao's group isolated several bioflavonoids and few steroids from the leaves of P. nagi grown in Yunnan (Wang et al., 2018). P. nagi was also distributed in Nanping of Fujian province, and in recent years, a large scale of *P. nagi* has been planted in Yangli town of Fujian province. In recent years, our research group focused on isolation of chemical components from the leaves and seeds (Yong et al., 2020: 100726). In this study, we isolated and confirmed four compounds from ethyl acetate extract of the leaves of the *P. nagi*: sugiol (1), Podocarpusflavone A (2) , II-4',I-7-dimethoxy amentoflavone (3) and tri(2,4-di-tert-butylphenyl) phosphate (4) (Figure 1).

Compounds **4** was isolated for the first time from the leaves of *P. nagi*, Compound **1** was selected to evaluate the preliminary *in vitro* anticancer activity against four cancer cell lines using the cell counting kit-8 (CCK-8) method (Tominaga et al., 1999).

#### **EXPERIMENT**

#### General experimental procedures

NMR spectra were recorded on a Bruker AV-400 spectrometer. Column chromatography (CC) was carried

Figure 1: Structures of compounds 1-4.

out on silica gel (100-200 mesh, Qingdao Marine Chemical Inc., Qingdao, China). Melting points were determined on a XT-4 apparatus equipped with a microscope and are uncorrected. Crystallography data were obtained from Rigaku SuperNova, with CCD detector and X-ray source of Cu K $\alpha$  radiation ( $\lambda$  = 1.54184 Å). The structure was solved by direct methods with Olex2 Crystallographic Software.

#### Plant material

The leaves of *P. nagi* were collected in September of 2018 from the Yangli town of Fujian province, China and identified by one of the authors (J.P. Yong).

#### **Extraction and isolation**

The detailed isolation processes are listed as follows: 10 kg of the air-dried and powdered leaves were added into a 25 L container and the material was dipped in 2 0L 70% ethanol-water solution for one month and then filtered. The filtrate was concentrated under the reduced pressure, the residue was dispersed in 5 L water and extracted with 3×1 L ethyl acetate. The ethyl acetate layers were combined and

concentrated under the reduced pressure to obtain another residue, which was rechromatographed over a column of silica gel with petroleum ether, petroleum ether-ethyl acetate ( $V_{\rm petroleum\ ether}$ : $V_{\rm ethyl\ acetate}$ , 10:1 to 0:1) as eluents to obtain 150 different polar fractions (Fr 1 to Fr 150). After HPLC analysis, we selected 10 fractions and combined for further isolation to obtain another 6 fractions: fraction 1(petroleum ether as eluent); fraction 2( $V_{\rm petroleum\ ether}$ : $V_{\rm ethyl\ acetate}$ , 10:1 as eluent); fraction 3( $V_{\rm petroleum\ ether}$ : $V_{\rm ethyl\ acetate}$ , 2:1 as eluent); fraction 5( $V_{\rm petroleum\ ether}$ : $V_{\rm ethyl\ acetate}$ , 2:1 as eluent); fraction 5( $V_{\rm petroleum\ ether}$ : $V_{\rm ethyl\ acetate}$ , 1:1 as eluent); fraction 6(ethyl acetate as eluent).

Compound **1**(a sesquiterpene) isolated from fraction **3**; compounds **2** and **3**(bioflavonoids) isolated from fraction **5**; compound **4**(a phosphate) isolated from the fraction **4**. Their structures were elucidated by NMR (<sup>1</sup>H-NMR and <sup>13</sup>C-NMR) and compounds **1** and **4** were also confirmed using XRD analysis (Figure 2). Full spectroscopic data for compounds **1-4** can be found in the Supporting information.

## Preliminary in vitro anticancer evaluation

Compound **1** was selected to evaluate for the preliminary *in* 

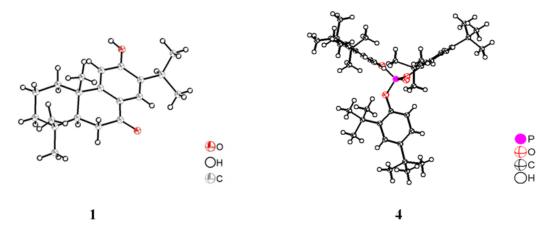



Figure 2: Crystal structures of compounds 1 and 4.

vitro anticancer activity against gastric cancer, breast cancer (MCF-7), lung cancer (A549) and Hela cell lines using the CCK-8 method. Briefly, the cancer cell lines were seeded in 96-well plates (5000 cells/well) with 100 µL DMEM supplemented with 10% fetal bovine serum, and cultured at 37°C in a humidified CO<sub>2</sub> incubator (95% air, 5% CO<sub>2</sub>) for 24 h. While the cell lines grew to 90% in logarithmic growth, the culture medium was removed from each well, and 100 µL fresh DEME was added to each well. Then, 10 μL solutions of compound 1 was added into each well (every compound was repeated for 5 times) and the plates were incubated for another 48 h at 37°C. Subsequently, 10 μL CCK8 was added to each well, and the plates were cultured at 37°C for another 4 h. The optical density was measured at a wave-length of 450 nm on an ELISA microplate reader. DMEM and DMSO solution (V/V: 10/1) was used as a negative control. The results were expressed as the inhibition calculated at the ratio  $[(1-(OD_{450} treated))]$  $OD_{450}$  negative control)) ×100].

## RESULTS AND DISCUSSION

In this study, we isolated four compounds from the leaves of *P. nagi*, and they were characterized using NMR, XRD and HR-MS.

Compound 1:  $C_{20}H_{28}O_2$ , colorless columnar crystal, m.p.: 246-248°C; HR-MS for  $C_{20}H_{28}O_2$ Na, [M+Na]+: Cal. 323.1982, found: 323.1982. Main crystallographic data: monoclinic, space group P2<sub>1</sub>; a =9.54, b =14.17, c =12.70Å,  $\alpha$ =90°,  $\beta$ =90°,  $\gamma$ =90°, V =1716.81 ų, Z = 4, d = 1.162 g/cm³. ¹H-NMR (400 MHz, DMSO- $d_6$ ,  $\delta$ , ppm) data as follows: 0.88(3H, s, H-18), 0.94(3H, s, H-19), 1.12(3H, s, H-20), 1.16(6H, d, J=8.0Hz, H-16, 17), 1.26(dd, J=4.0, 4.0Hz, H-6), 1.43(dd, J=4.0,4.0Hz, H-1),1.46(d, J=4.0Hz, H-3), 1.61(dd, J=4.0,4.0Hz, H-15),1.72(d, J=4.0Hz, H-1), 1.76(d, J=4.0Hz, H-3), 2.16(d, J=12 Hz, H-6), 2.46(dd, J=4.0, 4.0Hz, H-2), 2.50(d, J=4.0Hz, H-2), 6.78(1H, s, H-11), 7.65(1H, s, H-14), 10.25(1H, s, OH-12). HPLC showed that the purity of

compound **1** was 97.33%, chromatography condition:  $V_{\text{methanol}}$ :  $V_{\text{water}}$ =7:3, detection wavelength: 254 nm. The single-crystal data analysis results were ideal. By the comparison of the compounds physical data with those previously reported (Zhao et al., 2016), compound **1** was identified as sugiol.

Compound 2 was yellow amorphous powder obtained from the fraction 5, m.p.:234-236°C; HR-MS for C<sub>31</sub>H<sub>20</sub>O<sub>10</sub>Na, [M+Na]<sup>+</sup>: Cal. 575.0949, found: 575.0949. <sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ ,  $\delta$ , ppm) and <sup>13</sup>C-NMR(100 MHz, DMSO- $d_6$ ,  $\delta$ , ppm) data as below: 3.37(3H, s, H-II-4'), 6.15(1H, d, *J*=2.4Hz, H-I-6'), 6.36(1H, s, H-II-6), 6.36(1H, d, J=4.0Hz, H-I-2'), 6.67(1H, s, H-I-6), 6.69(1H, s, H-I-8), 6.76(1H, s, H-I-2), 6.80(1H, s, H-II-2), 7.10(1H, d, J=8.0Hz, H-I-3'), 7.52(1H, s, H-II-2'), 7.54(1H, s, H-II-6'), 7.96(1H,d, J=2.0Hz, H-II-2'), 7.97(1H,d, J=2.4Hz, H-II-3'), 10.26(1H, s, OH-I-7), 10.57(1H, br s, OH-I-4'),10.81(1H, s, OH-II-7),12.93(1H, s, OH-I-5), 13.06(1H, s, OH-II-5'); 56.56(OCH<sub>3</sub>-II-4'), 94.56(C-I-8), 99.12(C-I-6), 99.37(C-II-6), 100.00(C-I-4), 103.10(C-II-4), 103.47(C-II-8), 104.13(C-I-2), 104.21(C-I-3'), 104.48(C-II-3'), 116.28(C-II-5'), 116.68(C-I-5'), 120.48(C-II-1'), 121.45(C-I-5), 121.91(C-II-2'), 128.45(C-II-6'), 131.93(C-I-6'), 154.99(C-II-9'), 157.89(C-I-9), 160.07(C-160.07(C-II-7), 161.04(C-I-1), 161.55(C-I-7), 161.95(C-I-1'), 162.41(C-II-1), 164.21(C-II-2), 164.32(C-II-3), 164.64(C-II-5), 170.69(C-II-9),182.26(C-I-3), 182.65(C-II-3). HPLC showed that the purity of compound 2 was 96.70%, chromatography condition:  $V_{\text{methanol}}$ :  $V_{\text{water}}$ =7:3, detection wavelength: 254 nm. By comparison of the compounds spectrum data with those previously reported (Qiao et al., 2019), compound 2 was identified as Podocarpusflavone A.

Compound **3** was yellow amorphous powder obtained from the fraction **5**, m.p.:280-282°C; HR-MS for  $C_{32}H_{22}O_{10}Na$ , [M+Na]+: Cal. 589.1105, found: 589.1105. <sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ ,  $\delta$ , ppm) and <sup>13</sup>C-NMR(100 MHz, DMSO- $d_6$ ,  $\delta$ , ppm) data as below: 3.76(3H, s, H-I-4'), 3.84 (3H, s, H-II-4'), 6.20(1H, d, J=2.0Hz, H-I-6'), 6.42(1H, s, H-II-6), 6.48(1H, d, J=4.0Hz, H-I-2'), 6.91(1H, s, H-I-6),

6.93(1H, d, J=2.8Hz, H-I-3'), 6.95(1H, s, H-I-8), 7.37(1H, d, J=8.0Hz, H-II-2'), 7.61(1H, s, H-I-2), 7.63(1H, s, H-II-2), 8.06(1H, d, J=2.4Hz, H-II-6'), 8.21(2H, dd, J=4.0, 4.0Hz, H-II-3', H-II-5'), 10.85(2H, s, OH-I-7, OH-II-7), 12.93(1H, s, OH-I-5), 13.07(1H, s, OH-II-5'),; 55.52(OCH<sub>3</sub>-I-4'), 55.92(OCH<sub>3</sub>C-II-4'), 94.13(C-I-8), 98.65(C-I-6), 98.90(C-II-6), 103.24(C-I-4), 103.67(C-II-4), 103.68(C-II-8), 103.80(C-I-2), 111.74(C-I-3'), 114.56(C-II-3'), 114.85(C-II-5'), 121.58(C-I-5'), 122.54(C-II-1'), 122.84(C-I-1'), 127.83(C-II-2'), 128.26(C-II-6'), 130.90(C-I-6'), 154.36(C-II-9'), 157.42(C-I-9), 160.44(C-160.63(C-I-5), 160.73(C-II-7), 161.45(C-I-1), 161.49(C-I-7), 161.79(C-I-1'), 162.23(C-II-1), 162.90(C-II-2), 163.12(C-II-3), 163.35(C-II-5), 164.21(C-II-9), 181.80(C-I-3), 182.12(C-II-3). HPLC showed that the purity of compound 3 was 99.25%, chromatography condition:  $V_{\text{methanol}}$ :  $V_{\text{water}}$ =7:3, detection wavelength: 254 nm. By comparison of the compounds spectrum data with those previously reported (Suarez et al., 2003), compound 3 was identified as II-4',I-7-dimethoxy amentoflavone.

Compound 4:  $C_{42}H_{63}O_4P$ , white colorless single-crystal, m.p.:  $600\text{-}601^{\circ}\text{C}$ . Crystallographicdata: monoclinic, space group  $P2_1$ ; a=15.48, b=16.13, c=15.92Å,  $\alpha=90^{\circ}$ ,  $\beta=90.96^{\circ}$ ,  $\gamma=90^{\circ}$ ,  $V=3972.7\text{Å}^3$ , Z=111, d=1.108 g/cm³. The single-crystal data analysis results were ideal. By comparison of the compounds physical data with those previously reported (Vinuchakkaravarthy et al., 2010), compound 4 was identified as tris(2,4-di-tert-butylphenyl) phosphate.

The preliminary *in vitro* anticancer evaluation showed that compound **1** exhibited higher inhibition against gastric cancer, breast cancer (MCF-7), lung cancer(A549) and Hela cell lines with the inhibitions of 81.48% $\pm$ 1.36, 82.73% $\pm$ 2.08, 53.33% $\pm$ 1.82 and 23.92% $\pm$ 2.73, respectively at the concentration of 1.5×10<sup>-2</sup>M, which can explain the reasons why the leaves of *P. nagi.* exhibited higher anticancer activity in the previously published articles.

#### **CONCLUSION**

In this study, four compounds were isolated and confirmed from the leaves of *P. nagi*. During isolation of compounds 1, 2 and 3, we used the PTLC together with recrystallization methods. Compound **1** exhibited higher anticancer activity. Based on this result, study on more new compounds together their biological evaluation will be carried out soon.

## **ACKNOWLEDGMENTS**

This work was financially supported by the National Natural Science Foundation of China (21875252) and Self-created Area Project of Major Science Technology

Innovation Platform of Xiamen (3502ZCQ20171002).

#### REFERENCES

Dai B (2009). Chinese modern Yao medicine. Guangxi science and Technology Publishers, Guangxi. pp. 257-259

Liao ZY, Wei W (2015). Studies on volatile constituents and their antitumor activities from the peel and shell of *Podocarpus nagi* fruits. Her. Med. 34: 609-612.

Qiao YL, Liu XL, Li X, *et al* (2019). Biflavonoids from *Juniperus oblonga* inhibit organic anion transporter 3. Biochem. Biophys. Res. Commun. 509(4): 931-936.

State Administration of Traditional Chinese Medicine Editorial Board of <Zhong Hua Ben Cao > (1999). Zhong Hua Ben Cao. Shanghai Scientific & Technical Publishers, Shanghai. pp. 813-817

Suarez AI, Diaz MB, Delle MF, Compagnone RS (2003). Biflavonoids from *Podocalyx loranthoides*. Fitoterapia. 74(5): 473-475.

Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, Watanabe M (1999). A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Commun. 36(2): 47-50.

Vinuchakkaravarthy T, Sangeetha CK, Velmurugan D (2010). Tris(2,4-ditert-butylphenyl) phosphate. Acta Crystallogr. Sect. E Struct. Rep. Online. 66(Pt 9): o2207-8

Wang Q, Yang Z, Peng W, Zhang YK, Chen Y (2018). Study on the Constituents of *Podocarpus nagi*. J. Hainan Normal Univ. (Nat. Sci.). 31(1): 1-5.

Xu YM, Fang SD (1989). Chemical Composition of Podocarpaceae I. Anti-Tumor Chemical Composition in *Podocarpus nagi*. Acta Chimi. Sin. 47(11): 1080-1086.

Yang Y, Yong JP, Lu CZ (2019). Chemical and biological progress of *Podocarpus nagi*. Biomed. Res. Rev. 2(3): 1-5.

Yong JP, Lu CZ, Zhang SB (2020). Preparation method and use of *Podocarpus nagi* kernel oil. New Australian Innovation Patent, Application Number: 2020: 100726.

Zhao SM, Chou GX, Yang QS, Wang W, Zhou JL (2016). Abietane diterpenoids from *Caryopteris incana* (Thunb.) Miq. Org. Biomol. Chem. 14(14): 3510-3520.

Zheng YD, Bai G, Tang CP, Ke CQ, Yao S, Tong LJ, Feng F, Li Y, Ding J, Xie H, Ye Y (2018).  $7\alpha$ ,8 $\alpha$ -Epoxynagilactones and their glucosides from the twigs of *Podocarpus nagi*: Isolation, structures, and cytotoxic activities. Fitoterapia. 125: 17-183.

### Cite this article as:

Yang Y, Yong JP, Olatunde OZ, Lu CZ (2021). Chemical components isolated from the leaves of *Podocarpus nagi* planted in Fujian and preliminary *in vitro* anticancer activity. Acad. J. Med. Plants. 9(2): 019-022.

#### Submit your manuscript at:

https://www.academiapublishing.org/journals/ajmp/

# SUPPORTING MATERIALS

# 1. Crystllographic data and structure refinement

# (1) Sugiol:

**Table 1:** Crystal data and structure refinement for Sugiol (1).

| Identification code                         | Sugiol                                                       |
|---------------------------------------------|--------------------------------------------------------------|
| Empirical formula                           | $C_{20}H_{28}O_2$                                            |
| Formula weight                              | 300.21                                                       |
| Temperature/K                               | 100.0(2)                                                     |
| Crystal system                              | orthorhombic                                                 |
| Space group                                 | $P2_12_12_1$                                                 |
| a/Å                                         | 9.5425(3)                                                    |
| b/Å                                         | 14.1702(6)                                                   |
| c/Å                                         | 12.6965(4)                                                   |
| α/°                                         | 90                                                           |
| β/°                                         | 90                                                           |
| γ/°                                         | 90                                                           |
| Volume/ų                                    | 1716.81(11)                                                  |
| Z                                           | 4                                                            |
| $\rho_{calc}g/cm^3$                         | 1.162                                                        |
| μ/mm <sup>-1</sup>                          | 0.565                                                        |
| F(000)                                      | 656.0                                                        |
| Crystal size/mm <sup>3</sup>                | $0.2\times0.1\times0.05$                                     |
| Radiation                                   | $CuK\alpha (\lambda = 1.54184)$                              |
| 2Θ range for data collection/°              | 9.352 to 138.64                                              |
| Index ranges                                | $-11 \le h \le 11$ , $-17 \le k \le 16$ , $-15 \le l \le 11$ |
| Reflections collected                       | 5429                                                         |
| Independent reflections                     | 2973 [ $R_{int} = 0.0541$ , $R_{sigma} = 0.0824$ ]           |
| Data/restraints/parameters                  | 2973/0/205                                                   |
| Goodness-of-fit on F <sup>2</sup>           | 1.207                                                        |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0624$ , $wR_2 = 0.1798$                             |
| Final R indexes [all data]                  | $R_1 = 0.0813$ , $wR_2 = 0.1876$                             |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.29/-0.26                                                   |
| Flack parameter                             | 0.1(4)                                                       |

Table 2: Bond Lengths for Sugiol (1).

| Atom | Atom | Length/Å | Atom | Atom | Length/Å |
|------|------|----------|------|------|----------|
| 0001 | C007 | 1.238(6) | C009 | C00H | 1.526(8) |
| 0002 | C008 | 1.363(6) | C00A | C00C | 1.525(7) |
| C003 | C006 | 1.396(7) | C00B | C00D | 1.552(7) |
| C003 | C008 | 1.387(7) | C00B | C00F | 1.544(7) |
| C004 | C005 | 1.398(7) | C00B | C00I | 1.543(7) |
| C004 | C006 | 1.413(7) | COOC | C00J | 1.532(7) |

Table 2: Continued

| C004 | C007 | 1.453(7) | COOC | C00M | 1.516(8) |
|------|------|----------|------|------|----------|
| C005 | C00A | 1.372(7) | C00D | C00E | 1.529(7) |
| C006 | C00B | 1.537(7) | C00D | C00G | 1.554(7) |
| C007 | C00E | 1.512(7) | C00F | C00H | 1.534(7) |
| C008 | C00A | 1.412(7) | C00G | C00K | 1.547(8) |
| C009 | COOG | 1.533(7) | C00G | COOL | 1.538(8) |

Table 3: Bond Angles for Sugiol (1).

| Atom | Atom | Atom | Angle/°  | Atom | Atom | Atom | Angle/°  |
|------|------|------|----------|------|------|------|----------|
| C008 | C003 | C006 | 121.0(5) | C006 | C00B | C00I | 105.8(4) |
| C005 | C004 | C006 | 120.2(5) | C00F | C00B | C00D | 108.9(4) |
| C005 | C004 | C007 | 118.8(5) | C00I | C00B | C00D | 115.3(4) |
| C006 | C004 | C007 | 121.0(5) | C00I | C00B | C00F | 109.1(4) |
| C00A | C005 | C004 | 123.1(5) | C00A | COOC | COOJ | 110.3(4) |
| C003 | C006 | C004 | 117.3(5) | C00M | COOC | C00A | 113.0(5) |
| C003 | C006 | C00B | 121.3(5) | C00M | COOC | COOJ | 110.7(5) |
| C004 | C006 | C00B | 121.3(5) | C00B | C00D | COOG | 117.1(4) |
| 0001 | C007 | C004 | 121.7(5) | C00E | C00D | C00B | 110.4(4) |
| 0001 | C007 | C00E | 119.7(5) | C00E | C00D | COOG | 113.6(4) |
| C004 | C007 | C00E | 118.6(4) | C007 | C00E | C00D | 113.6(4) |
| 0002 | C008 | C003 | 121.1(5) | C00H | C00F | C00B | 112.9(4) |
| 0002 | C008 | C00A | 116.7(5) | C009 | C00G | C00D | 108.1(4) |
| C003 | C008 | C00A | 122.2(5) | C009 | C00G | C00K | 110.1(4) |
| C00H | C009 | C00G | 113.3(4) | C009 | C00G | COOL | 108.0(4) |
| C005 | C00A | C008 | 116.2(5) | C00K | C00G | C00D | 114.4(4) |
| C005 | C00A | COOC | 124.0(5) | C00L | C00G | C00D | 108.9(4) |
| C008 | C00A | COOC | 119.8(5) | C00L | C00G | C00K | 107.1(5) |
| C006 | C00B | C00D | 107.4(4) | C009 | C00H | C00F | 110.9(4) |
| C006 | C00B | C00F | 110.3(4) |      |      |      |          |

# (2) Tri(2,4-di-tert-butylphenyl) phosphate:

**Table 4:** Crystal data and structure refinement for tri(2,4-di-tert-butylphenyl) phosphate (4).

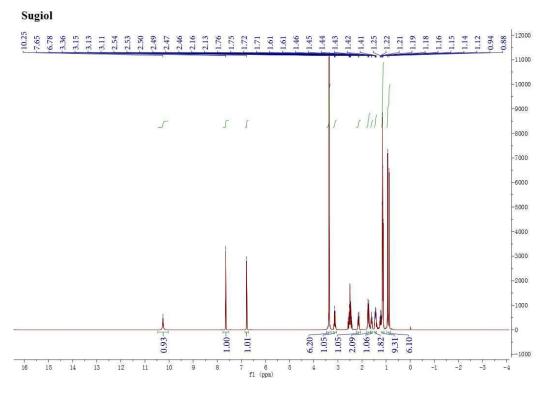
| Identification code   | Tri(2,4-di-tert-butylphenyl) phosphate |
|-----------------------|----------------------------------------|
| Empirical formula     | $C_{42}H_{63}O_4P$                     |
| Formula weight        | 662.45                                 |
| Temperature/K         | 100.00(13)                             |
| Crystal system        | monoclinic                             |
| Space group           | P2 <sub>1</sub> /n                     |
| a/Å                   | 15.4779(7)                             |
| b/Å                   | 16.1250(7)                             |
| c/Å                   | 15.9195(6)                             |
| α/°                   | 90                                     |
| β/°                   | 90.955(4)                              |
| γ/°                   | 90                                     |
| Volume/Å <sup>3</sup> | 3972.7(3)                              |
| Z                     | 111                                    |

Table 4: Continued

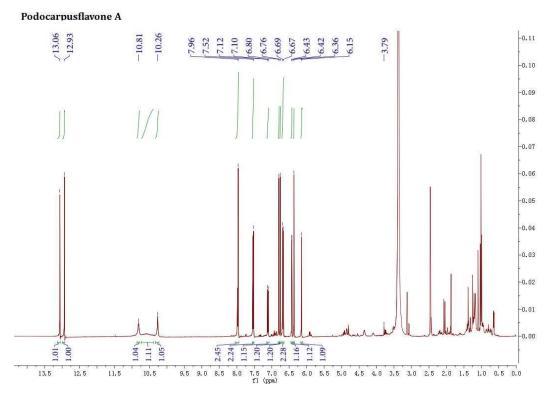
| $\rho_{\text{calc}}g/\text{cm}^3$ | 1.108                                                        |
|-----------------------------------|--------------------------------------------------------------|
| μ/mm <sup>-1</sup>                | 0.897                                                        |
| F(000)                            | 1448.0                                                       |
| Crystal size/mm <sup>3</sup>      | $0.35 \times 0.2 \times 0.05$                                |
| Radiation                         | $CuK\alpha (\lambda = 1.54184)$                              |
| 20 range for data collection/°    | 7.804 to 150.31                                              |
| Index ranges                      | $-19 \le h \le 18$ , $-19 \le k \le 19$ , $-19 \le l \le 13$ |
| Reflections collected             | 16593                                                        |
| Independent reflections           | 7226 [ $R_{int} = 0.0367$ , $R_{sigma} = 0.0418$ ]           |
| Data/restraints/parameters        | 7226/0/442                                                   |
| Goodness-of-fit on F <sup>2</sup> | 1.022                                                        |
| Final R indexes [I>=2σ (I)]       | $R_1 = 0.0488$ , $wR_2 = 0.1287$                             |
| Final R indexes [all data]        | $R_1 = 0.0628$ , $wR_2 = 0.1426$                             |
| Largest diff. peak/hole / e Å-3   | 0.55/-0.39                                                   |

**Table 5:** Bond Lengths for tri(2,4-di-tert-butylphenyl) phosphate(4).

| Atom | Atom | Length/Å   | Atom | Atom | Length/Å |
|------|------|------------|------|------|----------|
| P1   | 01   | 1.5731(13) | C14  | C16  | 1.390(3) |
| P1   | 02   | 1.5757(14) | C16  | C33  | 1.537(3) |
| P1   | 03   | 1.5691(13) | C17  | C25  | 1.401(3) |
| P1   | 04   | 1.4578(14) | C17  | C27  | 1.538(3) |
| 01   | C20  | 1.410(2)   | C18  | C25  | 1.398(3) |
| 02   | C11  | 1.411(2)   | C18  | C26  | 1.543(3) |
| 03   | C23  | 1.418(2)   | C19  | C24  | 1.527(3) |
| C5   | C8   | 1.383(3)   | C21  | C22  | 1.543(2) |
| C5   | C20  | 1.383(3)   | C21  | C28  | 1.526(3) |
| C6   | C16  | 1.400(3)   | C21  | C29  | 1.536(3) |
| C6   | C22  | 1.401(3)   | C21  | C34  | 1.537(3) |
| C7   | C14  | 1.393(3)   | C22  | C23  | 1.404(3) |
| C7   | C23  | 1.380(3)   | C24  | C40  | 1.525(3) |
| C8   | C19  | 1.386(3)   | C24  | C41  | 1.528(3) |
| С9   | C13  | 1.390(3)   | C24  | C43  | 1.524(3) |
| С9   | C19  | 1.403(3)   | C26  | C32  | 1.544(3) |
| C10  | C13  | 1.547(3)   | C26  | C35  | 1.540(3) |
| C10  | C30  | 1.538(3)   | C26  | C39  | 1.535(3) |
| C10  | C31  | 1.529(3)   | C27  | C37  | 1.518(3) |
| C10  | C38  | 1.534(3)   | C27  | C45  | 1.517(3) |
| C11  | C15  | 1.379(3)   | C27  | C46  | 1.525(4) |
| C11  | C18  | 1.400(3)   | C33  | C36  | 1.533(3) |
| C12  | C15  | 1.390(3)   | C33  | C42  | 1.514(3) |
| C12  | C17  | 1.384(3)   | C33  | C44  | 1.535(3) |
| C13  | C20  | 1.403(3)   |      |      |          |


**Table 6:** Bond Angles for tri(2,4-di-tert-butylphenyl) phosphate(4).

| Atom | Atom | Atom | Angle/°   | Atom | Atom | Atom | Angle/°    |
|------|------|------|-----------|------|------|------|------------|
| 01   | P1   | 02   | 100.22(7) | C5   | C20  | 01   | 120.50(17) |
| 03   | P1   | 01   | 101.50(7) | C5   | C20  | C13  | 121.94(19) |


Table 6: Continued

| 03         P1         02         102.07(7)         C13         C20         01         117.47(16)           04         P1         01         117.19(8)         C28         C21         C22         111.75(16)           04         P1         02         116.65(8)         C28         C21         C34         106.85(16)           04         P1         03         116.52(7)         C28         C21         C34         106.85(16)           C20         01         P1         127.89(11)         C29         C21         C32         109.44(16)           C11         02         P1         126.69(12)         C34         C21         C34         110.73(17)           C23         03         P1         128.69(12)         C34         C21         C22         110.48(16)           C8         C5         C20         120.09(18)         C6         C22         C21         121.65(17)           C16         C6         C22         124.16(18)         C6         C22         C21         121.65(17)           C13         C7         C14         119.76(18)         C7         C23         03         120.85(17)           C13         C10         C1                                                                                                                                   |     |     |     |            |     |     |     |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------------|-----|-----|-----|------------|
| 04         P1         02         116.65(8)         C28         C21         C29         107.54(16)           04         P1         03         116.52(7)         C28         C21         C34         106.85(16)           C20         01         P1         127.89(11)         C29         C21         C34         109.44(16)           C11         02         P1         126.59(12)         C29         C21         C34         110.73(17)           C23         03         P1         128.69(12)         C34         C21         C22         110.48(16)           C8         C5         C20         120.09(18)         C6         C22         C21         121.65(17)           C16         C6         C22         124.16(18)         C6         C22         C21         121.55(17)           C16         C6         C22         124.16(18)         C6         C22         C23         115.62(17)           C10         C3         C22         121         122.72(17)         C23         C22         C21         122.72(17)           C5         C8         C19         121.07(18)         C7         C23         03         120.85(17)           C13         <                                                                                                                               | 03  |     |     |            |     |     |     |            |
| 04         P1         03         116.52(7)         C28         C21         C34         106.85(16)           C20         01         P1         127.89(11)         C29         C21         C22         109.44(16)           C11         02         P1         126.59(12)         C29         C21         C34         110.73(17)           C23         03         P1         128.69(12)         C34         C21         C22         110.48(16)           C8         C5         C20         120.09(18)         C6         C22         C21         121.65(17)           C16         C6         C22         124.16(18)         C6         C22         C23         115.62(17)           C23         C7         C14         119.76(18)         C7         C23         03         120.85(17)           C13         C9         C19         124.60(18)         C7         C23         C32         C22         122.21(17)           C30         C10         C13         110.68(17)         C22         C23         03         116.88(16)           C31         C10         C33         110.27(18)         C40         C24         C41         110.81(17)           C31                                                                                                                                    | 04  | P1  |     |            | C28 |     |     | 111.75(16) |
| C20         01         P1         127.89(11)         C29         C21         C22         109.44(16)           C11         02         P1         126.59(12)         C29         C21         C34         110.73(17)           C23         03         P1         128.69(12)         C34         C21         C22         110.48(16)           C8         C5         C20         120.09(18)         C6         C22         C21         121.65(17)           C16         C6         C22         124.16(18)         C6         C22         C23         115.62(17)           C23         C7         C14         119.76(18)         C3         C22         C21         122.72(17)           C5         C8         C19         121.07(18)         C7         C23         O3         120.85(17)           C13         C9         C19         124.60(18)         C7         C23         O22         122.21(17)           C30         C10         C13         110.08(17)         C22         C23         O3         116.88(16)           C31         C10         C33         110.27(18)         C40         C24         C41         1108.11(17)           C31         C10                                                                                                                                  | 04  | P1  | 02  | 116.65(8)  | C28 | C21 | C29 | 107.54(16) |
| C11         O2         P1         126.59(12)         C29         C21         C34         110.73(17)           C23         O3         P1         128.69(12)         C34         C21         C22         110.48(16)           C8         C5         C20         120.09(18)         C6         C22         C21         121.65(17)           C16         C6         C22         124.16(18)         C6         C22         C23         115.62(17)           C23         C7         C14         119.76(18)         C3         C22         C21         122.72(17)           C5         C8         C19         121.07(18)         C7         C23         O3         120.85(17)           C13         C9         C19         124.60(18)         C7         C23         C32         C22         122.21(17)           C30         C10         C13         110.68(17)         C22         C23         O3         110.81(17)           C31         C10         C33         110.27(18)         C40         C24         C41         110.81(17)           C31         C10         C38         106.77(18)         C40         C24         C41         108.69(17)           C31                                                                                                                                 | 04  | P1  | 03  | 116.52(7)  | C28 | C21 | C34 | 106.85(16) |
| C23         03         P1         128.69(12)         C34         C21         C22         110.48(16)           C8         C5         C20         120.09(18)         C6         C22         C21         121.65(17)           C16         C6         C22         124.16(18)         C6         C22         C23         115.62(17)           C23         C7         C14         119.76(18)         C3         C22         C21         122.72(17)           C5         C8         C19         121.07(18)         C7         C23         O3         120.85(17)           C13         C9         C19         124.60(18)         C7         C23         C32         122.21(17)           C30         C10         C13         110.68(17)         C22         C23         O3         116.88(16)           C31         C10         C13         110.04(16)         C19         C24         C41         110.81(17)           C31         C10         C33         110.27(18)         C40         C24         C41         110.81(17)           C31         C10         C33         110.27(18)         C40         C24         C41         108.34(19)           C31         C10                                                                                                                               | C20 | 01  | P1  | 127.89(11) | C29 | C21 | C22 | 109.44(16) |
| C8         C5         C20         120.09(18)         C6         C22         C21         121.65(17)           C16         C6         C22         124.16(18)         C6         C22         C23         115.62(17)           C23         C7         C14         119.76(18)         C7         C23         C22         C21         122.72(17)           C5         C8         C19         121.07(18)         C7         C23         O22         122.21(17)           C13         C9         C19         124.60(18)         C7         C23         C22         122.21(17)           C30         C10         C13         110.68(17)         C22         C23         03         116.88(16)           C31         C10         C13         110.04(16)         C19         C24         C41         110.81(17)           C31         C10         C38         106.77(18)         C40         C24         C41         108.69(17)           C31         C10         C38         106.77(18)         C40         C24         C41         108.69(17)           C31         C10         C33         107.72(18)         C40         C24         C41         108.34(19)           C38 </td <td>C11</td> <td>02</td> <td>P1</td> <td>126.59(12)</td> <td>C29</td> <td>C21</td> <td>C34</td> <td>110.73(17)</td>   | C11 | 02  | P1  | 126.59(12) | C29 | C21 | C34 | 110.73(17) |
| C16         C6         C22         124.16(18)         C6         C22         C23         115.62(17)           C23         C7         C14         119.76(18)         C23         C22         C21         122.72(17)           C5         C8         C19         121.07(18)         C7         C23         O3         120.85(17)           C13         C9         C19         124.60(18)         C7         C23         C22         122.21(17)           C30         C10         C13         110.68(17)         C22         C23         O3         116.88(16)           C31         C10         C13         110.04(16)         C19         C24         C41         110.81(17)           C31         C10         C30         110.27(18)         C40         C24         C41         108.69(17)           C31         C10         C38         106.77(18)         C40         C24         C41         108.69(17)           C33         C10         C33         107.72(18)         C40         C24         C41         108.69(17)           C33         C10         C13         111.28(17)         C43         C24         C41         108.6(2)           C15         C12<                                                                                                                          | C23 | 03  | P1  | 128.69(12) | C34 | C21 | C22 | 110.48(16) |
| C23         C7         C14         119,76(18)         C23         C22         C21         122,72(17)           C5         C8         C19         121,07(18)         C7         C23         O3         120,85(17)           C13         C9         C19         124,60(18)         C7         C23         C22         122,21(17)           C30         C10         C13         110,68(17)         C22         C23         O3         116,88(16)           C31         C10         C13         110,04(16)         C19         C24         C41         110,81(17)           C31         C10         C38         106,77(18)         C40         C24         C41         108,69(17)           C31         C10         C38         106,77(18)         C40         C24         C41         108,69(17)           C38         C10         C13         111,28(17)         C43         C24         C49         112,20(18)           C38         C10         C30         107,72(18)         C43         C24         C41         108,6(2)           C15         C11         C18         121,83(17)         C43         C24         C41         108,6(2)           C15         C11<                                                                                                                          | C8  | C5  | C20 | 120.09(18) | C6  | C22 | C21 | 121.65(17) |
| C5         C8         C19         121.07(18)         C7         C23         O3         120.85(17)           C13         C9         C19         124.60(18)         C7         C23         C22         122.21(17)           C30         C10         C13         110.68(17)         C22         C23         O3         116.88(16)           C31         C10         C13         110.04(16)         C19         C24         C41         110.81(17)           C31         C10         C30         110.27(18)         C40         C24         C19         108.69(17)           C31         C10         C38         106.77(18)         C40         C24         C41         108.69(17)           C38         C10         C13         111.28(17)         C43         C24         C41         108.34(19)           C38         C10         C30         107.72(18)         C43         C24         C40         108.1(2)           C15         C11         O2         120.89(17)         C43         C24         C41         108.6(2)           C15         C11         C18         121.83(17)         C18         C25         C17         124.53(18)           C15         C11<                                                                                                                          | C16 | C6  | C22 | 124.16(18) | C6  | C22 | C23 | 115.62(17) |
| C13         C9         C19         124.60(18)         C7         C23         C22         122.21(17)           C30         C10         C13         110.68(17)         C22         C23         03         116.88(16)           C31         C10         C13         110.04(16)         C19         C24         C41         110.81(17)           C31         C10         C30         110.27(18)         C40         C24         C19         108.69(17)           C31         C10         C38         106.77(18)         C40         C24         C41         108.34(19)           C38         C10         C13         111.28(17)         C43         C24         C19         112.20(18)           C38         C10         C30         107.72(18)         C43         C24         C49         108.1(2)           C15         C11         O2         120.89(17)         C43         C24         C40         108.1(2)           C15         C11         O2         120.89(17)         C43         C24         C41         108.6(2)           C15         C11         O2         120.89(17)         C43         C24         C41         108.1(2)           C15         C11 <td>C23</td> <td>C7</td> <td>C14</td> <td>119.76(18)</td> <td>C23</td> <td>C22</td> <td>C21</td> <td>122.72(17)</td>        | C23 | C7  | C14 | 119.76(18) | C23 | C22 | C21 | 122.72(17) |
| C30         C10         C13         110.68(17)         C22         C23         O3         116.88(16)           C31         C10         C13         110.04(16)         C19         C24         C41         110.81(17)           C31         C10         C30         110.27(18)         C40         C24         C19         108.69(17)           C31         C10         C38         106.77(18)         C40         C24         C41         108.34(19)           C38         C10         C13         111.28(17)         C43         C24         C19         112.20(18)           C38         C10         C30         107.72(18)         C43         C24         C40         108.1(2)           C15         C11         O2         120.89(17)         C43         C24         C41         108.6(2)           C15         C11         C02         120.89(17)         C43         C24         C41         108.6(2)           C15         C11         C18         121.83(17)         C18         C25         C17         124.53(18)           C18         C11         C1         C18         122.83(17)         C18         C25         C17         124.53(18)           C                                                                                                                          | C5  | C8  | C19 | 121.07(18) | C7  | C23 | 03  | 120.85(17) |
| C31         C10         C13         110.04(16)         C19         C24         C41         110.81(17)           C31         C10         C30         110.27(18)         C40         C24         C19         108.69(17)           C31         C10         C38         106.77(18)         C40         C24         C41         108.34(19)           C38         C10         C13         111.28(17)         C43         C24         C19         112.20(18)           C38         C10         C30         107.72(18)         C43         C24         C40         108.1(2)           C15         C11         O2         120.89(17)         C43         C24         C41         108.6(2)           C15         C11         C18         121.83(17)         C18         C25         C17         124.53(18)           C18         C11         O2         117.26(16)         C18         C26         C32         109.94(17)           C17         C12         C15         120.77(18)         C35         C26         C18         110.21(16)           C9         C13         C10         122.15(17)         C35         C26         C32         110.60(17)           C9                                                                                                                                   | C13 | C9  | C19 | 124.60(18) | C7  | C23 | C22 | 122.21(17) |
| C31         C10         C30         110.27(18)         C40         C24         C19         108.69(17)           C31         C10         C38         106.77(18)         C40         C24         C41         108.34(19)           C38         C10         C13         111.28(17)         C43         C24         C19         112.20(18)           C38         C10         C30         107.72(18)         C43         C24         C40         108.1(2)           C15         C11         O2         120.89(17)         C43         C24         C41         108.6(2)           C15         C11         C18         121.83(17)         C18         C25         C17         124.53(18)           C18         C11         O2         117.26(16)         C18         C26         C32         109.94(17)           C17         C12         C15         120.77(18)         C35         C26         C13         110.21(16)           C9         C13         C10         122.15(17)         C35         C26         C12         110.60(17)           C9         C13         C20         115.45(17)         C39         C26         C32         110.60(17)           C9         C                                                                                                                          | C30 | C10 | C13 | 110.68(17) | C22 | C23 | 03  | 116.88(16) |
| C31         C10         C38         106.77(18)         C40         C24         C41         108.34(19)           C38         C10         C13         111.28(17)         C43         C24         C19         112.20(18)           C38         C10         C30         107.72(18)         C43         C24         C40         108.1(2)           C15         C11         O2         120.89(17)         C43         C24         C41         108.6(2)           C15         C11         C18         121.83(17)         C18         C25         C17         124.53(18)           C18         C11         O2         117.26(16)         C18         C26         C32         109.94(17)           C17         C12         C15         120.77(18)         C35         C26         C18         110.21(16)           C9         C13         C10         122.15(17)         C35         C26         C32         110.60(17)           C9         C13         C20         115.45(17)         C39         C26         C18         111.66(16)           C20         C13         C10         122.39(18)         C39         C26         C32         106.69(17)           C16                                                                                                                                   | C31 | C10 | C13 | 110.04(16) | C19 | C24 | C41 | 110.81(17) |
| C38         C10         C13         111.28(17)         C43         C24         C19         112.20(18)           C38         C10         C30         107.72(18)         C43         C24         C40         108.1(2)           C15         C11         O2         120.89(17)         C43         C24         C41         108.6(2)           C15         C11         C18         121.83(17)         C18         C25         C17         124.53(18)           C18         C11         O2         117.26(16)         C18         C26         C32         109.94(17)           C17         C12         C15         120.77(18)         C35         C26         C18         110.21(16)           C9         C13         C10         122.15(17)         C35         C26         C32         110.60(17)           C9         C13         C20         115.45(17)         C39         C26         C18         111.66(16)           C20         C13         C10         122.39(18)         C39         C26         C32         106.69(17)           C16         C14         C7         121.16(17)         C39         C26         C35         107.65(18)           C11         C                                                                                                                          | C31 | C10 | C30 | 110.27(18) | C40 | C24 | C19 | 108.69(17) |
| C38         C10         C30         107.72(18)         C43         C24         C40         108.1(2)           C15         C11         O2         120.89(17)         C43         C24         C41         108.6(2)           C15         C11         C18         121.83(17)         C18         C25         C17         124.53(18)           C18         C11         O2         117.26(16)         C18         C26         C32         109.94(17)           C17         C12         C15         120.77(18)         C35         C26         C18         110.21(16)           C9         C13         C10         122.15(17)         C35         C26         C32         110.60(17)           C9         C13         C20         115.45(17)         C39         C26         C18         111.66(16)           C20         C13         C10         122.39(18)         C39         C26         C32         106.69(17)           C16         C14         C7         121.16(17)         C39         C26         C32         106.69(17)           C16         C13         C12.16(17)         C39         C26         C35         107.65(18)           C11         C15         C                                                                                                                          | C31 | C10 | C38 | 106.77(18) | C40 | C24 | C41 | 108.34(19) |
| C15         C11         O2         120.89(17)         C43         C24         C41         108.6(2)           C15         C11         C18         121.83(17)         C18         C25         C17         124.53(18)           C18         C11         O2         117.26(16)         C18         C26         C32         109.94(17)           C17         C12         C15         120.77(18)         C35         C26         C18         110.21(16)           C9         C13         C10         122.15(17)         C35         C26         C32         110.60(17)           C9         C13         C20         115.45(17)         C39         C26         C18         111.66(16)           C20         C13         C10         122.39(18)         C39         C26         C32         106.69(17)           C16         C14         C7         121.16(17)         C39         C26         C32         106.69(17)           C16         C14         C7         121.16(17)         C39         C26         C35         107.65(18)           C11         C15         C12         120.34(18)         C37         C27         C17         109.94(16)           C6         C                                                                                                                          | C38 | C10 | C13 | 111.28(17) | C43 | C24 | C19 | 112.20(18) |
| C15         C11         C18         121.83(17)         C18         C25         C17         124.53(18)           C18         C11         O2         117.26(16)         C18         C26         C32         109.94(17)           C17         C12         C15         120.77(18)         C35         C26         C18         110.21(16)           C9         C13         C10         122.15(17)         C35         C26         C32         110.60(17)           C9         C13         C20         115.45(17)         C39         C26         C18         111.66(16)           C20         C13         C10         122.39(18)         C39         C26         C32         106.69(17)           C16         C14         C7         121.16(17)         C39         C26         C35         107.65(18)           C11         C15         C12         120.34(18)         C37         C27         C17         109.94(16)           C6         C16         C33         120.43(17)         C37         C27         C46         108.7(2)           C14         C16         C6         117.05(17)         C45         C27         C17         111.55(18)           C14                                                                                                                                   | C38 | C10 | C30 | 107.72(18) | C43 | C24 | C40 | 108.1(2)   |
| C18         C11         O2         117.26(16)         C18         C26         C32         109.94(17)           C17         C12         C15         120.77(18)         C35         C26         C18         110.21(16)           C9         C13         C10         122.15(17)         C35         C26         C32         110.60(17)           C9         C13         C20         115.45(17)         C39         C26         C18         111.66(16)           C20         C13         C10         122.39(18)         C39         C26         C32         106.69(17)           C16         C14         C7         121.16(17)         C39         C26         C35         107.65(18)           C11         C15         C12         120.34(18)         C37         C27         C17         109.94(16)           C6         C16         C33         120.43(17)         C37         C27         C46         108.7(2)           C14         C16         C6         117.05(17)         C45         C27         C17         111.55(18)           C14         C16         C33         122.49(17)         C45         C27         C37         108.5(2)           C12         C1                                                                                                                          | C15 | C11 | 02  | 120.89(17) | C43 | C24 | C41 | 108.6(2)   |
| C17         C12         C15         120.77(18)         C35         C26         C18         110.21(16)           C9         C13         C10         122.15(17)         C35         C26         C32         110.60(17)           C9         C13         C20         115.45(17)         C39         C26         C18         111.66(16)           C20         C13         C10         122.39(18)         C39         C26         C32         106.69(17)           C16         C14         C7         121.16(17)         C39         C26         C35         107.65(18)           C11         C15         C12         120.34(18)         C37         C27         C17         109.94(16)           C6         C16         C33         120.43(17)         C37         C27         C46         108.7(2)           C14         C16         C6         117.05(17)         C45         C27         C17         111.55(18)           C14         C16         C33         122.49(17)         C45         C27         C37         108.5(2)           C12         C17         C25         116.89(18)         C45         C27         C46         108.2(2)           C12         C17                                                                                                                          | C15 | C11 | C18 | 121.83(17) | C18 | C25 | C17 | 124.53(18) |
| C9         C13         C10         122.15(17)         C35         C26         C32         110.60(17)           C9         C13         C20         115.45(17)         C39         C26         C18         111.66(16)           C20         C13         C10         122.39(18)         C39         C26         C32         106.69(17)           C16         C14         C7         121.16(17)         C39         C26         C35         107.65(18)           C11         C15         C12         120.34(18)         C37         C27         C17         109.94(16)           C6         C16         C33         120.43(17)         C37         C27         C46         108.7(2)           C14         C16         C6         117.05(17)         C45         C27         C17         111.55(18)           C14         C16         C33         122.49(17)         C45         C27         C37         108.5(2)           C12         C17         C25         116.89(18)         C45         C27         C46         108.2(2)           C12         C17         C27         122.33(17)         C46         C27         C17         109.89(18)           C25         C17                                                                                                                          | C18 | C11 | 02  | 117.26(16) | C18 | C26 | C32 | 109.94(17) |
| C9         C13         C20         115.45(17)         C39         C26         C18         111.66(16)           C20         C13         C10         122.39(18)         C39         C26         C32         106.69(17)           C16         C14         C7         121.16(17)         C39         C26         C35         107.65(18)           C11         C15         C12         120.34(18)         C37         C27         C17         109.94(16)           C6         C16         C33         120.43(17)         C37         C27         C46         108.7(2)           C14         C16         C6         117.05(17)         C45         C27         C17         111.55(18)           C14         C16         C33         122.49(17)         C45         C27         C37         108.5(2)           C12         C17         C25         116.89(18)         C45         C27         C46         108.2(2)           C12         C17         C25         116.89(18)         C45         C27         C46         108.2(2)           C12         C17         C27         122.33(17)         C46         C27         C17         109.89(18)           C25         C17<                                                                                                                          | C17 | C12 | C15 | 120.77(18) | C35 | C26 | C18 | 110.21(16) |
| C20         C13         C10         122.39(18)         C39         C26         C32         106.69(17)           C16         C14         C7         121.16(17)         C39         C26         C35         107.65(18)           C11         C15         C12         120.34(18)         C37         C27         C17         109.94(16)           C6         C16         C33         120.43(17)         C37         C27         C46         108.7(2)           C14         C16         C6         117.05(17)         C45         C27         C17         111.55(18)           C14         C16         C33         122.49(17)         C45         C27         C37         108.5(2)           C12         C17         C25         116.89(18)         C45         C27         C46         108.2(2)           C12         C17         C27         122.33(17)         C46         C27         C17         109.89(18)           C25         C17         C27         120.77(18)         C36         C33         C16         111.31(17)           C11         C18         C26         122.80(17)         C36         C33         C44         106.5(2)           C25         C18                                                                                                                          | C9  | C13 | C10 | 122.15(17) | C35 | C26 | C32 | 110.60(17) |
| C16         C14         C7         121.16(17)         C39         C26         C35         107.65(18)           C11         C15         C12         120.34(18)         C37         C27         C17         109.94(16)           C6         C16         C33         120.43(17)         C37         C27         C46         108.7(2)           C14         C16         C6         117.05(17)         C45         C27         C17         111.55(18)           C14         C16         C33         122.49(17)         C45         C27         C37         108.5(2)           C12         C17         C25         116.89(18)         C45         C27         C46         108.2(2)           C12         C17         C27         122.33(17)         C46         C27         C17         109.89(18)           C25         C17         C27         120.77(18)         C36         C33         C16         111.31(17)           C11         C18         C26         122.80(17)         C36         C33         C44         106.5(2)           C25         C18         C11         115.38(17)         C42         C33         C16         112.34(18)           C25         C18                                                                                                                          | C9  | C13 | C20 | 115.45(17) | C39 | C26 | C18 | 111.66(16) |
| C11         C15         C12         120.34(18)         C37         C27         C17         109.94(16)           C6         C16         C33         120.43(17)         C37         C27         C46         108.7(2)           C14         C16         C6         117.05(17)         C45         C27         C17         111.55(18)           C14         C16         C33         122.49(17)         C45         C27         C37         108.5(2)           C12         C17         C25         116.89(18)         C45         C27         C46         108.2(2)           C12         C17         C27         122.33(17)         C46         C27         C17         109.89(18)           C25         C17         C27         120.77(18)         C36         C33         C16         111.31(17)           C11         C18         C26         122.80(17)         C36         C33         C44         106.5(2)           C25         C18         C11         115.38(17)         C42         C33         C16         112.34(18)           C25         C18         C26         121.81(17)         C42         C33         C36         108.5(2)           C8         C19 </td <td>C20</td> <td>C13</td> <td>C10</td> <td>122.39(18)</td> <td>C39</td> <td>C26</td> <td>C32</td> <td>106.69(17)</td> | C20 | C13 | C10 | 122.39(18) | C39 | C26 | C32 | 106.69(17) |
| C6         C16         C33         120.43(17)         C37         C27         C46         108.7(2)           C14         C16         C6         117.05(17)         C45         C27         C17         111.55(18)           C14         C16         C33         122.49(17)         C45         C27         C37         108.5(2)           C12         C17         C25         116.89(18)         C45         C27         C46         108.2(2)           C12         C17         C27         122.33(17)         C46         C27         C17         109.89(18)           C25         C17         C27         120.77(18)         C36         C33         C16         111.31(17)           C11         C18         C26         122.80(17)         C36         C33         C44         106.5(2)           C25         C18         C11         115.38(17)         C42         C33         C16         112.34(18)           C25         C18         C26         121.81(17)         C42         C33         C36         108.5(2)           C8         C19         C9         116.84(19)         C42         C33         C44         110.0(2)           C8         C19                                                                                                                                | C16 | C14 | C7  | 121.16(17) | C39 | C26 | C35 | 107.65(18) |
| C14         C16         C6         117.05(17)         C45         C27         C17         111.55(18)           C14         C16         C33         122.49(17)         C45         C27         C37         108.5(2)           C12         C17         C25         116.89(18)         C45         C27         C46         108.2(2)           C12         C17         C27         122.33(17)         C46         C27         C17         109.89(18)           C25         C17         C27         120.77(18)         C36         C33         C16         111.31(17)           C11         C18         C26         122.80(17)         C36         C33         C44         106.5(2)           C25         C18         C11         115.38(17)         C42         C33         C16         112.34(18)           C25         C18         C26         121.81(17)         C42         C33         C36         108.5(2)           C8         C19         C9         116.84(19)         C42         C33         C44         110.0(2)           C8         C19         C24         122.59(17)         C44         C33         C16         108.05(18)                                                                                                                                                       | C11 | C15 | C12 | 120.34(18) | C37 | C27 | C17 | 109.94(16) |
| C14         C16         C33         122.49(17)         C45         C27         C37         108.5(2)           C12         C17         C25         116.89(18)         C45         C27         C46         108.2(2)           C12         C17         C27         122.33(17)         C46         C27         C17         109.89(18)           C25         C17         C27         120.77(18)         C36         C33         C16         111.31(17)           C11         C18         C26         122.80(17)         C36         C33         C44         106.5(2)           C25         C18         C11         115.38(17)         C42         C33         C16         112.34(18)           C25         C18         C26         121.81(17)         C42         C33         C36         108.5(2)           C8         C19         C9         116.84(19)         C42         C33         C44         110.0(2)           C8         C19         C24         122.59(17)         C44         C33         C16         108.05(18)                                                                                                                                                                                                                                                                      | C6  | C16 | C33 | 120.43(17) | C37 | C27 | C46 | 108.7(2)   |
| C12         C17         C25         116.89(18)         C45         C27         C46         108.2(2)           C12         C17         C27         122.33(17)         C46         C27         C17         109.89(18)           C25         C17         C27         120.77(18)         C36         C33         C16         111.31(17)           C11         C18         C26         122.80(17)         C36         C33         C44         106.5(2)           C25         C18         C11         115.38(17)         C42         C33         C16         112.34(18)           C25         C18         C26         121.81(17)         C42         C33         C36         108.5(2)           C8         C19         C9         116.84(19)         C42         C33         C44         110.0(2)           C8         C19         C24         122.59(17)         C44         C33         C16         108.05(18)                                                                                                                                                                                                                                                                                                                                                                                    | C14 | C16 | C6  | 117.05(17) | C45 | C27 | C17 | 111.55(18) |
| C12         C17         C27         122.33(17)         C46         C27         C17         109.89(18)           C25         C17         C27         120.77(18)         C36         C33         C16         111.31(17)           C11         C18         C26         122.80(17)         C36         C33         C44         106.5(2)           C25         C18         C11         115.38(17)         C42         C33         C16         112.34(18)           C25         C18         C26         121.81(17)         C42         C33         C36         108.5(2)           C8         C19         C9         116.84(19)         C42         C33         C44         110.0(2)           C8         C19         C24         122.59(17)         C44         C33         C16         108.05(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C14 | C16 | C33 | 122.49(17) | C45 | C27 | C37 | 108.5(2)   |
| C25         C17         C27         120.77(18)         C36         C33         C16         111.31(17)           C11         C18         C26         122.80(17)         C36         C33         C44         106.5(2)           C25         C18         C11         115.38(17)         C42         C33         C16         112.34(18)           C25         C18         C26         121.81(17)         C42         C33         C36         108.5(2)           C8         C19         C9         116.84(19)         C42         C33         C44         110.0(2)           C8         C19         C24         122.59(17)         C44         C33         C16         108.05(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C12 | C17 | C25 | 116.89(18) | C45 | C27 | C46 | 108.2(2)   |
| C11       C18       C26       122.80(17)       C36       C33       C44       106.5(2)         C25       C18       C11       115.38(17)       C42       C33       C16       112.34(18)         C25       C18       C26       121.81(17)       C42       C33       C36       108.5(2)         C8       C19       C9       116.84(19)       C42       C33       C44       110.0(2)         C8       C19       C24       122.59(17)       C44       C33       C16       108.05(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C12 | C17 | C27 | 122.33(17) | C46 | C27 | C17 | 109.89(18) |
| C25       C18       C11       115.38(17)       C42       C33       C16       112.34(18)         C25       C18       C26       121.81(17)       C42       C33       C36       108.5(2)         C8       C19       C9       116.84(19)       C42       C33       C44       110.0(2)         C8       C19       C24       122.59(17)       C44       C33       C16       108.05(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C25 | C17 | C27 | 120.77(18) | C36 | C33 | C16 | 111.31(17) |
| C25       C18       C26       121.81(17)       C42       C33       C36       108.5(2)         C8       C19       C9       116.84(19)       C42       C33       C44       110.0(2)         C8       C19       C24       122.59(17)       C44       C33       C16       108.05(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C11 | C18 | C26 | 122.80(17) | C36 | C33 | C44 | 106.5(2)   |
| C8 C19 C9 116.84(19) C42 C33 C44 110.0(2)<br>C8 C19 C24 122.59(17) C44 C33 C16 108.05(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C25 | C18 | C11 | 115.38(17) | C42 | C33 | C16 | 112.34(18) |
| C8 C19 C24 122.59(17) C44 C33 C16 108.05(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C25 | C18 | C26 | 121.81(17) | C42 | C33 | C36 | 108.5(2)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C8  | C19 | С9  | 116.84(19) | C42 | C33 | C44 | 110.0(2)   |
| C9 C19 C24 120.57(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C8  | C19 | C24 | 122.59(17) | C44 | C33 | C16 | 108.05(18) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C9  | C19 | C24 | 120.57(17) |     |     |     |            |

### 2. NMR spectrums of the isolated Compounds



**Figure S1.** <sup>1</sup>H-NMR spectrum of Sugiol (1) in DMSO- $d_6$ .



**Figure S2:** <sup>1</sup>H-NMR spectrum of Podocarpusflavone A(**2**) in DMSO-*d*<sub>6</sub>.

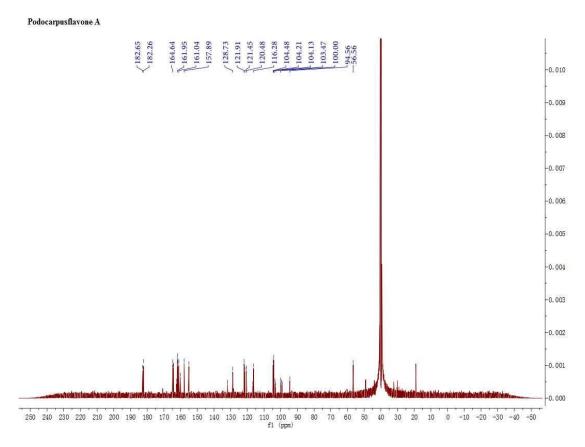
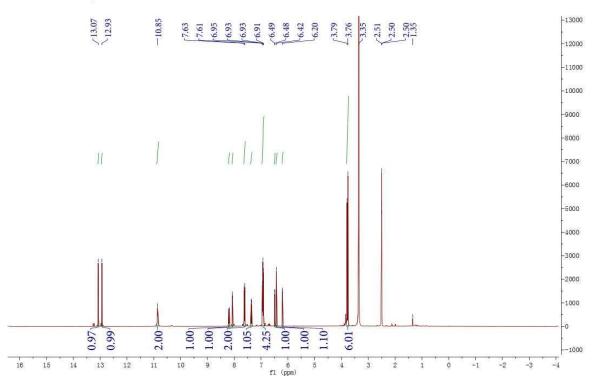
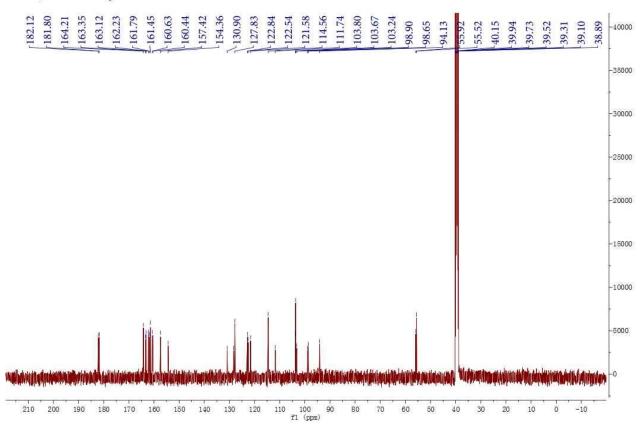
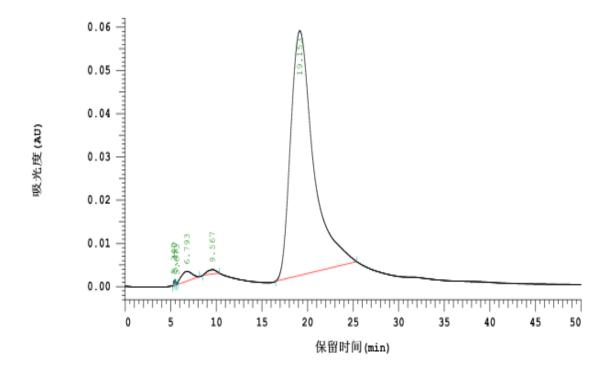



Figure S3.<sup>13</sup>C-NMRspectrum ofPodocarpusflavone A (2) in DMSO-d<sub>6</sub>.

#### II-4',I-7-dimethoxy amentoflavone

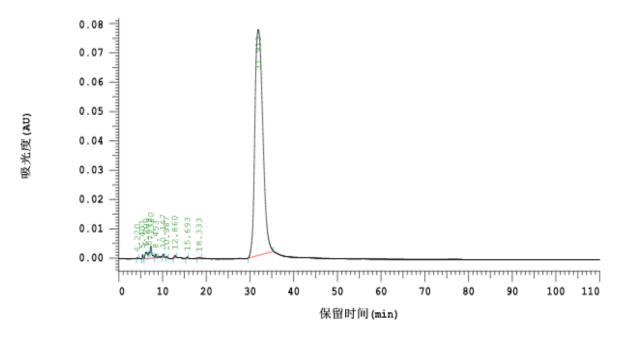


Figure S4: <sup>1</sup>H-NMRspectrum ofII-4',I-7-dimethoxy amentoflavone(3) in DMSO-d<sub>6</sub>.

### II-4',I-7-dimethoxy amentoflavone



**Figure S5:** <sup>13</sup>C-NMRspectrum ofII-4',I-7-dimethoxy amentoflavone (3) in DMSO-*d*<sub>6</sub>.

## 3. Compounds spectrums of HPLC analysis.

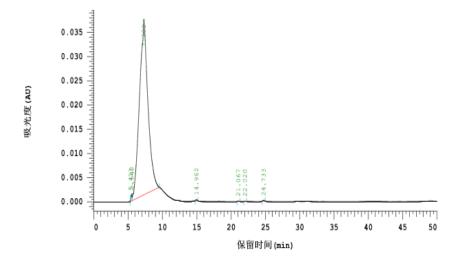



色谱类型: 整合色谱, 240 - 260 nm

峰的定量:面积 计算方法:面积%

| No. | RT      | 面积      | 浓度1     | BC |
|-----|---------|---------|---------|----|
| 1   | 5, 340  | 3614    | 0.072   | BV |
| 2   | 5. 487  | 3754    | 0.074   | VB |
| 3   | 5. 673  | 1674    | 0.033   | BV |
| 4   | 6. 793  | 92629   | 1. 835  | VB |
| 5   | 9. 567  | 33298   | 0.660   | BB |
| 6   | 19. 153 | 4911657 | 97. 326 | BB |
|     |         | 5046626 | 100.000 |    |

Figure S6: HPLC spectrum of Sugiol (1).




色谱类型: 整合色谱, 240 - 260 nm

峰的定量:面积 计算方法:面积%

| No. | RT      | 面积      | 浓度1     | BC |
|-----|---------|---------|---------|----|
| 1   | 4. 220  | 1059    | 0.021   | BB |
| 2   | 5. 407  | 9099    | 0.184   | BB |
| 3   | 6. 200  | 40595   | 0.821   | BV |
| 4   | 6. 973  | 22225   | 0.450   | VV |
| 5   | 7. 360  | 53406   | 1.080   | VV |
| 6   | 8, 453  | 11298   | 0. 229  | VB |
| 7   | 10. 147 | 8768    | 0. 177  | BB |
| 8   | 10. 987 | 2914    | 0.059   | BB |
| 9   | 12, 860 | 8372    | 0.169   | BB |
| 10  | 15, 693 | 3379    | 0.068   | BB |
| 11  | 18, 333 | 2067    | 0.042   | BB |
| 12  | 31. 913 | 4780800 | 96.699  | BB |
|     |         | 4943982 | 100.000 |    |

Figure S7: HPLC spectrum of Podocarpusflavone A (2).



色谱类型: 整合色谱, 240 - 260 nm

峰的定量:面积 计算方法:面积%

| No. | RT      | 面积      | 浓度1     | BC |
|-----|---------|---------|---------|----|
| 1   | 5, 413  | 3530    | 0, 225  | BV |
| 2   | 5. 540  | 4481    | 0. 286  | VV |
| 3   | 7, 300  | 1554724 | 99. 257 | VB |
| 4   | 14.960  | 1472    | 0.094   | BB |
| 5   | 21.067  | 737     | 0.047   | BB |
| 6   | 22, 020 | 461     | 0.029   | BB |
| 7   | 24. 733 | 951     | 0.061   | BB |
|     |         | 1566356 | 100.000 |    |

Figure S8: HPLC spectrum of II-4',I-7-dimethoxy amentoflavone (3).

## 4. Compounds spectrums of HR-MS analysis.

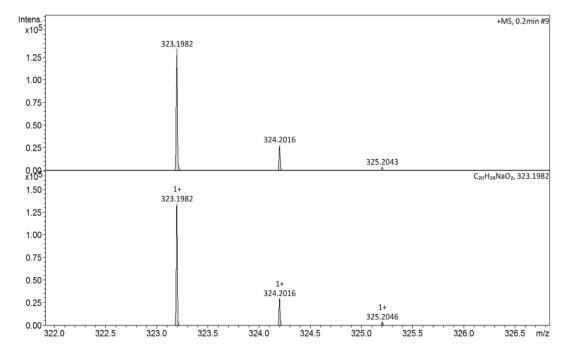
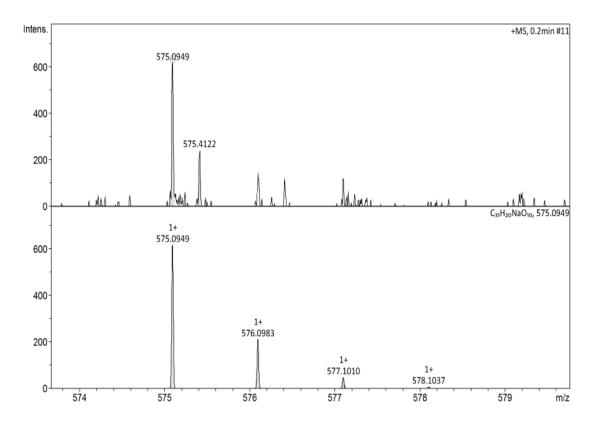




Figure S9: HR-MS spectrum of suigol (1).



**Figure S10:** HR-MS spectrum of Podocarpusflavone A (2).

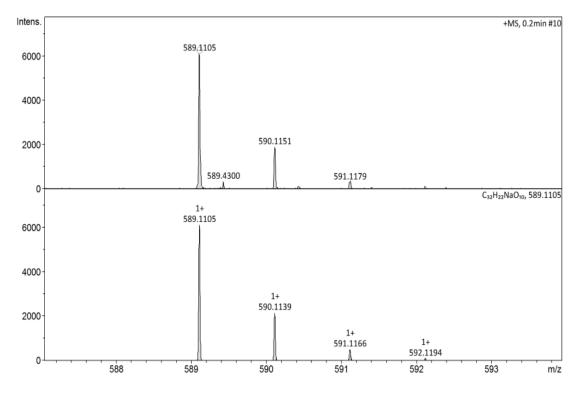



Figure S11: HR-MSspectrum ofII-4',I-7-dimethoxy amentoflavone A (3).